4.7 Article

microRNA-96 promotes occurrence and progression of colorectal cancer via regulation of the AMPKα2-FTO-m6A/MYC axis

Journal

Publisher

BMC
DOI: 10.1186/s13046-020-01731-7

Keywords

Colorectal cancer; microRNA-96; m6A modification; AMPKα 2; FTO; MYC

Categories

Funding

  1. National Natural Science Foundation of China [81602416, 81602691]
  2. Guangzhou Science and Technology Projects [201803010094]

Ask authors/readers for more resources

Background Colorectal cancer (CRC) is one of the frequently occurred malignancies in the world. To date, several onco-microRNAs (miRNAs or miRs), including miR-96, have been identified in the pathogenesis of CRC. In the present study, we aimed to corroborate the oncogenic effect of miR-96 on CRC and to identify the specific mechanisms related to AMPK alpha 2/FTO/m6A/MYC. Methods RT-qPCR and Western blot analysis were performed to examine the expression pattern of miR-96, AMPK alpha 2, FTO and MYC in the clinical CRC tissues and cells. The relationship between miR-96 and AMPK alpha 2 was then predicted using in silico analysis and identified by dual-luciferase reporter assay. Gain- or loss-of-function approaches were manipulated to evaluate the modulatory effects of miR-96, AMPK alpha 2, FTO and MYC on cell growth, cycle progression and apoptosis. The mechanism of FTO-mediated m6A modification of MYC was analyzed via Me-RIP and PAR-CLIP analysis. The mediatory effects of miR-96 antagomir on cancerogenesis were validated in vivo. Results miR-96, FTO and MYC were upregulated, while AMPK alpha 2 was downregulated in CRC tissues and cells. miR-96 could down-regulate AMPK alpha 2, which led to increased expression of FTO and subsequent upregulated expression of MYC via blocking its m6A modification. This mechanism was involved in the pro-proliferative and anti-apoptotic roles of miR-96 in CRC cells. Besides, down-regulation of miR-96 exerted inhibitory effect on tumor growth in vivo. Conclusions Taken together, miR-96 antagomir could potentially retard the cancerogenesis in CRC via AMPK alpha 2-dependent inhibition of FTO and blocking FTO-mediated m6A modification of MYC, highlighting novel mechanisms associated with colorectal cancerogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available