4.7 Article

Differential Contribution of the Retrotrapezoid Nucleus and C1 Neurons to Active Expiration and Arousal in Rats

Journal

JOURNAL OF NEUROSCIENCE
Volume 40, Issue 45, Pages 8683-8697

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.1006-20.2020

Keywords

active expiration; arousal; breathing; C1 neurons; chemoreceptor; retrotrapezoid nucleus

Categories

Funding

  1. National Institutes of Health [HL28785, HL074011, R01HL148004]

Ask authors/readers for more resources

Collectively, the retrotrapezoid nucleus (RTN) and adjacent C1 neurons regulate breathing, circulation and the state of vigilance, but previous methods to manipulate the activity of these neurons have been insufficiently selective to parse out their relative roles. We hypothesize that RTN and C1 neurons regulate distinct aspects of breathing (e.g., frequency, amplitude, active expiration, sighing) and differ in their ability to produce arousal from sleep. Here we use optogenetics and a combination of viral vectors in adult male and female Th-Cre rats to transduce selectively RTN (Phox2b(+)/Nmb(+)) or C1 neurons (Phox2b(+)/Th+) with Channelrhodopsin-2. RTN photostimulation modestly increased the probability of arousal. RTN stimulation robustly increased breathing frequency and amplitude; it also triggered strong active expiration but not sighs. Consistent with these responses, RTN innervates the entire pontomedullary respiratory network, including expiratory premotor neurons in the caudal ventral respiratory group, but RTN has very limited projections to brainstem regions that regulate arousal (locus ceruleus, CGRP(+) parabrachial neurons). C1 neuron stimulation produced robust arousals and similar increases in breathing frequency and amplitude compared with RTN stimulation, but sighs were elicited and active expiration was absent. Unlike RTN, C1 neurons innervate the locus ceruleus, CGRP(+) processes within the parabrachial complex, and lack projections to caudal ventral respiratory group. In sum, stimulating C1 or RTN activates breathing robustly, but only RTN neuron stimulation produces active expiration, consistent with their role as central respiratory chemoreceptors. Conversely, C1 stimulation strongly stimulates ascending arousal systems and sighs, consistent with their postulated role in acute stress responses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available