4.6 Article

Hierarchical Cu2S@NiCo-LDH double-shelled nanotube arrays with enhanced electrochemical performance for hybrid supercapacitors

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 8, Issue 42, Pages 22163-22174

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ta08006c

Keywords

-

Funding

  1. National Natural Science Foundation of China [21671173]
  2. Zhejiang Provincial Ten Thousand Talent Program [2017R52043]

Ask authors/readers for more resources

Hierarchical nanotube arrays with complex shell structures are attractive for applications in electrode materials for effectively boosted electrochemical performance, but the construction of such delicate architectures with excellent electrochemical performance is very challenging. Herein, double-shelled nanotube arrays of hierarchical Cu2S@nickel-cobalt layered double hydroxide (Cu2S@NiCo-LDH DSNAs) are synthesized on a Cu foam (CF) substrate with a sequential multi-step strategy, and an integrated electrode is constructed with the nanostructured material. Benefiting from the unique hollow structure and the sophisticated assembly of different nano-sized subunits, the as-prepared hierarchical Cu2S@NiCo-LDH DSNA electrode exhibits excellent electrochemical performances with a high mass loading of 5.0 mg cm(-2), including a high specific capacity of 2.8 mA h cm(-2) (20.4 F cm(-2), 555.6 mA h g(-1)) at 4 mA cm(-2) and remarkable rate capability with 87% capacity retention at 40 mA cm(-2). Furthermore, a quasi-solid-state hybrid supercapacitor (HSC) is assembled with the Cu2S@NiCo-LDH DSNAs and metal-organic framework (MOF)-derived nanoporous carbon (NPC) as the electrodes, exhibiting a high energy density of 1.67 mW h cm(-2) at the power density of 4.25 mW cm(-2).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available