4.6 Article

Load Transfer during Magnetic Mucoperiosteal Distraction in Newborns with Complete Unilateral and Bilateral Orofacial Clefts: A Three-Dimensional Finite Element Analysis

Journal

APPLIED SCIENCES-BASEL
Volume 10, Issue 21, Pages -

Publisher

MDPI
DOI: 10.3390/app10217728

Keywords

cleft lip and palate; finite element model; periosteal bone remodeling; unilateral cleft palate; bilateral cleft palate; distraction

Funding

  1. Freiwillige Akademische Gesellschaft (FAG), Basel, Switzerland

Ask authors/readers for more resources

The primary correction of congenital complete unilateral cleft lip and palate (UCLP) and bilateral cleft lip and palate (BCLP) is challenging due to inherent lack of palatal tissue and small extent of the palatal shelves at birth. The tissue deficiency affects the nasal mucosa, maxillary bone and palatal mucosa. This condition has driven the evolution of several surgical and non-surgical techniques for mitigating the inherent problem of anatomical deficits. These techniques share the common principle of altering the neighboring tissues around the defect area in order to form a functional seal between the oral and nasal cavity. However, there is currently no option for rectifying the tissue deficiency itself. Investigations have repeatedly shown that despite the structural tissue deficiency of the cleft, craniofacial growth proceeds normal if the clefts remain untreated, but the cleft remains wide. Conversely, craniofacial growth is reduced after surgical repair and the related alteration of the tissues. Therefore, numerous attempts have been made to change the surgical technique and timing so as to reduce the effects of surgical repairs on craniofacial growth, but they have been only minimally effective so far. We have determined whether the intrinsic structural soft and hard tissue deficiency can be ameliorated before surgical repair using the principles of periosteal distraction by means of magnetic traction. Two three-dimensional maxillary finite element models, with cleft patterns of UCLP and BCLP, respectively, were created from computed tomography slice data using dedicated image analysis software. A virtual dental magnet was positioned on either side of the cleft at the mucoperiosteal borders, and an incremental magnetic attraction force of up to 5 N was applied to simulate periosteal distraction. The stresses and strains in the periosteal tissue induced by the magnet were calculated using finite element analysis. For a 1 N attraction force the maximum strains did not exceed 1500 mu strain suggesting that adaptive remodeling will not take place for attraction forces lower than 1 N. At 5 N the regions subject to remodeling differed between the UCLP and BCLP models. Stresses and strains at the periosteum of the palatal shelf ridges in the absence of compressive forces at the alveolar borders were greater in the UCLP model than the BCLP model. The findings suggest that in newborns with UCLP and BCLP, periosteal distraction by means of a magnetic 5 N attraction force can promote the generation of soft and hard tissues along the cleft edges and rectify the tissue deficiency associated with the malformation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available