4.6 Article

Effect of SiC Reinforcement and Its Variation on the Mechanical Characteristics of AZ91 Composites

Journal

MATERIALS
Volume 13, Issue 21, Pages -

Publisher

MDPI
DOI: 10.3390/ma13214913

Keywords

metal matrix composites; SiC; AZ91; mechanical characterization; magnesium alloy

Ask authors/readers for more resources

In this study, the processing of SiC particulate-strengthened magnesium alloy metal matrix composites via vacuum supported inert atmosphere stir casting process is presented. The effects of small variations in the SiC particulate (average size 20 mu m) reinforcement in magnesium alloy AZ91 were examined. It was found that with the addition of SiC particulate reinforcement, the hardness improved considerably, while the ultimate tensile and yield strength improved slightly. The density and porosity of the magnesium alloy-based composites increased with the increase in the wt.% of SiC particulates. The tensile and compressive fracture study of the fabricated composites was also performed. The tensile fractures were shown to be mixed-mode fractures (i.e., ductile and cleavage). The fractured surface also disclosed tiny dimples, micro-crack, and cleavage fractures which increases with increasing reinforcement. For the compression fracture, the surface microstructural studies of AZ91 displayed major shear failure and demonstrated the greater shear bands when compared to AZ91/SiC composites, which instead revealed rough fracture surfaces with mixed-mode brittle and shear features.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available