3.9 Article

Recent advances on the crystallization engineering of energetic materials

Journal

ENERGETIC MATERIALS FRONTIERS
Volume 1, Issue 3-4, Pages 141-156

Publisher

KEAI PUBLISHING LTD
DOI: 10.1016/j.enmf.2020.12.004

Keywords

Crystallization engineering; Crystal morphology; Crystal defects; Thermal stability; Explosive sensitivity

Funding

  1. NSAF project [U2030202]
  2. National Defense Basic Science Foundation of China [61407200204]

Ask authors/readers for more resources

The safety properties and desirable detonation performance of energetic materials (EMs) are mutually exclusive, therefore, various strategies including the coating, doping, crystallization, and co-crystallization, are applied to achieve high-energy insensitive explosives with well-balanced energy and safety level. Among these strategies, the crystallization is the most commonly method owing to its low cost and facile process, through which the tuning of the particle size and morphology, adjust sensitivity of EMs by tailoring the processes conditions. As the control of the crystal particle size is difficult, the ultrasound and electrospray are introduced, and by use of the spray drying or spray-assisted electrospray methods, the spherical RDX, HMX, and CL-20 crystals with less defects is obtained. Moreover, the perfect spherical crystals are gained without agglomeration through employing polymeric additives in the crystallization process. In general, the crystallization with spray drying, electrospray, and ultrasound-assisted solvent/antisolvent are the optimal crystals preparation methods. The nano-crystals with narrow particle size distribution are less sensitive to external stimuli than irregular microcrystals, and defects are associated with hot spots, the safety and energy performance of EMs could be well balanced by crystallization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available