4.1 Article

Post-impact damage tolerance of natural fibre-reinforced sheet moulding compound

Journal

ADVANCED COMPOSITES LETTERS
Volume 29, Issue -, Pages -

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/2633366X20967935

Keywords

damage tolerance; impact; residual strength; natural fibre; SMC

Ask authors/readers for more resources

Natural fibre composites are of interest for a wide range of semi-structural applications in the building, construction and automotive sector. For a number of these applications, the evaluation of performance degradation after impact is of some relevance. The present work focused on the influence of fibre volume fraction and fibre surface treatment on the residual load-bearing capability of hemp fibre-reinforced sheet moulding compound (H-SMC) after non-penetrating impacts. Post-impact flexural strength and stiffness of H-SMC decreased linearly with increasing impact energy. At higher impact energy levels, the residual flexural strength of H-SMC improved with increasing fibre volume fraction. However, for the same amount of absorbed energy, the residual strength or damage tolerance capability of glass fibre-reinforced sheet moulding compound was about twice that of H-SMC. Composites based on surface treated hemp fibres showed a slight improvement in residual flexural strength, particularly for systems based on hemp fibres treated with a combined alkaline and silane surface treatment. Surface treated systems showed improved levels of adhesion and increased levels of energy absorption through potential mechanisms such as debonding, pull-out or fibre fibrillation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available