4.7 Article

FiDoop-DP: Data Partitioning in Frequent Itemset Mining on Hadoop Clusters

Journal

Publisher

IEEE COMPUTER SOC
DOI: 10.1109/TPDS.2016.2560176

Keywords

Frequent itemset mining; parallel data mining; data partitioning; mapreduce programming model; hadoop cluster

Funding

  1. National Natural Science Foundation of P.R. China [61272263, 61572343]
  2. U.S. National Science Foundation [CCF-0845257]

Ask authors/readers for more resources

Traditional parallel algorithms for mining frequent itemsets aim to balance load by equally partitioning data among a group of computing nodes. We start this study by discovering a serious performance problem of the existing parallel Frequent Itemset Mining algorithms. Given a large dataset, data partitioning strategies in the existing solutions suffer high communication and mining overhead induced by redundant transactions transmitted among computing nodes. We address this problem by developing a data partitioning approach called FiDoop-DP using the MapReduce programming model. The overarching goal of FiDoop-DP is to boost the performance of parallel Frequent Itemset Mining on Hadoop clusters. At the heart of FiDoop-DP is the Voronoi diagram-based data partitioning technique, which exploits correlations among transactions. Incorporating the similarity metric and the Locality-Sensitive Hashing technique, FiDoop-DP places highly similar transactions into a data partition to improve locality without creating an excessive number of redundant transactions. We implement FiDoop-DP on a 24-node Hadoop cluster, driven by a wide range of datasets created by IBM Quest Market-Basket Synthetic Data Generator. Experimental results reveal that FiDoop-DP is conducive to reducing network and computing loads by the virtue of eliminating redundant transactions on Hadoop nodes. FiDoop-DP significantly improves the performance of the existing parallel frequent-pattern scheme by up to 31 percent with an average of 18 percent.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available