4.6 Review

Molecular Insights Into O-Linked Glycan Utilization by Gut Microbes

Journal

FRONTIERS IN MICROBIOLOGY
Volume 11, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fmicb.2020.591568

Keywords

glycans; prebiotics; GMP; mucin; microbiota; glycoprotein

Categories

Funding

  1. Fondecyt [1190074]

Ask authors/readers for more resources

O-linked glycosylation is a post-translational modification found mainly in eukaryotic cells, which covalently attaches oligosaccharides to secreted proteins in certain threonine or serine residues. Most of O-glycans have N-acetylgalactosamine (GalNAc) as a common core. Several glycoproteins, such as mucins (MUCs), immunoglobulins, and caseins are examples of O-glycosylated structures. These glycans are further elongated with other monosaccharides and sulfate groups. Some of them could be found in dairy foods, while others are produced endogenously, in both cases interacting with the gut microbiota. Interestingly, certain gut microbes can access, release, and consume O-linked glycans as a carbon source. Among these, Akkermansia muciniphila, Bifidobacterium bifidum, and Bacteroides thetaiotaomicron are prominent O-linked glycan utilizers. Their consumption strategies include specialized alpha-fucosidases and alpha-sialidases, in addition to endo-alpha-N-acetylgalactosaminidases that release galacto-N-biose (GNB) from peptides backbones. O-linked glycan utilization by certain gut microbes represents an important niche that allows them to predominate and modulate host responses such as inflammation. Here, we focus on the distinct molecular mechanisms of consumption of O-linked GalNAc glycans by prominent gut microbes, especially from mucin and casein glycomacropeptide (GMP), highlighting the potential of these structures as emerging prebiotics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available