4.8 Article

Merging C(sp3)-H activation with DNA-encoding

Journal

CHEMICAL SCIENCE
Volume 11, Issue 45, Pages 12282-12288

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0sc03935g

Keywords

-

Funding

  1. Scripps Research Institute
  2. Pfizer

Ask authors/readers for more resources

DNA-encoded library (DEL) technology has the potential to dramatically expedite hit identification in drug discovery owing to its ability to perform protein affinity selection with millions or billions of molecules in a few experiments. To expand the molecular diversity of DEL, it is critical to develop different types of DNA-encoded transformations that produce billions of molecules with distinct molecular scaffolds. Sequential functionalization of multiple C-H bonds provides a unique avenue for creating diversity and complexity from simple starting materials. However, the use of water as solvent, the presence of DNA, and the extremely low concentration of DNA-encoded coupling partners (0.001 M) have hampered the development of DNA-encoded C(sp(3))-H activation reactions. Herein, we report the realization of palladium-catalyzed C(sp(3))-H arylation of aliphatic carboxylic acids, amides and ketones with DNA-encoded aryl iodides in water. Notably, the present method enables the use of alternative sets of monofunctional building blocks, providing a linchpin to facilitate further setup for DELs. Furthermore, the C-H arylation chemistry enabled the on-DNA synthesis of structurally-diverse scaffolds containing enriched C(sp(3)) character, chiral centers, cyclopropane, cyclobutane, and heterocycles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available