4.6 Article

Exploiting Hansen solubility parameters to tune porosity and function in conjugated microporous polymers

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 8, Issue 43, Pages 22657-22665

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ta05563h

Keywords

-

Funding

  1. Science and Technology Project of Fujian Educational Committee [JAT190051]
  2. Fuzhou University Testing Fund [2020T008]
  3. Research Initiation Funding of Fuzhou University [GXRC-19051]
  4. Chinese Scholarship Council (CSC)
  5. National Natural Science Foundation of China [21878054, 51978569]

Ask authors/readers for more resources

Here we expand our recently reported Bristol-Xi'an Jiaotong (BXJ) approach using simple salts to fine-tune the porosity of conjugated microporous materials synthesized by various reaction approaches, including Buchwald-Hartwig (BH), Sonogashira-Hagihara, oxidative coupling and Suzuki cross-coupling. The surface area and the porosity of the produced conjugated microporous polyanilines (CMPAs) acquired from the non-salt-added BH coupling are optimized by the addition of inorganic salts. BXJ-salt addition provides a facile route to radically improve the BET surface area from 28 to 901 m(2) g(-1) for PTAPA and from 723 m(2) g(-1) to 1378 m(2) g(-1) for PAPA in a controllable manner. In addition, the surface area shows a gradual decrease with an increase in the ionic radius of salts. We furthermore show high compatibility of this approach in the synthesis of typical CMPs, further increasing the surface area from 886 to 1148 m(2) g(-1), 981 to 1263 m(2) g(-1), and 35 to 215 m(2) g(-1) for CMP-1, PTCT and p-PPF, respectively. More importantly, the BXJ approach also allows the broad PSD of the CMPs to be narrowed to the microporous range only, mimicking COFs and MOFs. With the porosity optimized, CO2 uptakes are dramatically improved by >300% from 0.75 mmol g(-1) to 2.59 mmol g(-1) for PTAPA and from 2.41 mmol g(-1) to 2.93 mmol g(-1) for PAPA. Careful addressing of Hansen solubility parameters (HSPs) of solvents and resulting polymers through salt addition has the potential to become an important design tool for the preparation of fully tuneable porous materials. We are currently exploring further methods to tune both structure and function in a wide range of organic porous materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available