4.7 Article

Breakdown of electroneutrality in nanopores

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 579, Issue -, Pages 162-176

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2020.05.109

Keywords

Double layer; Nanopores; Electroneutrality breakdown; Poisson-Boltzmann; Confinement

Funding

  1. Center for Enhanced Nanofluidic Transport (CENT), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0019112]
  2. Amar G. Bose Research Grant (1d lattice-gas model)
  3. National Science Foundation [1122374]

Ask authors/readers for more resources

Ion transport in extremely narrow nanochannels has gained increasing interest in recent years due to unique physical properties at the nanoscale and the technological advances that allow us to study them. It is tempting to approach this confined regime with the theoretical tools and knowledge developed for membranes and microfluidic devices, and naively apply continuum models, such as the Poisson-Nernst-Planck and Navier-Stokes equations. However, it turns out that some of the most basic principles we take for granted in larger systems, such as the complete screening of surface charge by counter-ions, can break down under extreme confinement. We show that in a truly one-dimensional system of ions interacting with three-dimensional electrostatic interactions, the screening length is exponentially large, and can easily exceed the macroscopic length of a nanotube. Without screening, electroneutrality breaks down within the nanotube, with fundamental consequences for ion transport and electrokinetic phenomena. In this work, we build a general theoretical framework for electroneutrality breakdown in nanopores, focusing on the most interesting case of a one-dimensional nanotube, and show how it provides an elegant interpretation for the peculiar scaling observed in experimental measurements of ionic conductance in carbon nanotubes. (C) 2020 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available