4.6 Article

Tailoring non-fullerene acceptors using selenium-incorporated heterocycles for organic solar cells with over 16% efficiency

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 8, Issue 45, Pages 23756-23765

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ta06658c

Keywords

-

Funding

  1. Shen Zhen Technology and Innovation Commission [JCYJ20170413173814007, JCYJ20170818113905024]
  2. Hong Kong Research Grants Council [R6021-18, 16305915, 16322416, 606012, 16303917]
  3. Hong Kong Innovation and Technology Commission [ITC-CNERC14SC01, ITS/471/18]
  4. National Natural Science Foundation of China (NSFC) [91433202]
  5. National Key Research and Development Program of China - MOST [2019YFA0705900]
  6. ONR [N000141712204, N000142012155]
  7. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]

Ask authors/readers for more resources

Small molecular acceptors (SMAs) have gained extensive research attention as they offer many attractive features and enable highly efficient organic solar cells (OSCs) that cannot be achieved using fullerene acceptors. Recently, a new SMA named Y6 was reported, yielding high-performance OSCs with an efficiency of 15.7%. This report has inspired the OSC community to study the structure-property relationship and further modify this important class of materials. In this work, we used the selenium (Se) substitution strategy and developed two new Y6-type SMAs to study the effect of Se atoms on materials properties and device performances. It is found that the introduction of Se atoms can red-shift the absorption spectra and enhance the aggregation of the resulting SMAs. Interestingly, the variations in the substitution positions of Se atoms induce different intramolecular charge transfer within the SMAs. Se substitution at the benzothiadiazole ring is more effective than that at the thienothiophene rings, leading to the increased short-circuit current density (J(SC)) and higher efficiencies of over 16%. This contribution suggests that appropriate Se substitution is a promising method for optimizing the absorption and aggregation of Y6-type SMAs, thus enhancing their OSC performances.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available