4.8 Article

YTHDF1-enhanced iron metabolism depends on TFRC m6A methylation

Journal

THERANOSTICS
Volume 10, Issue 26, Pages 12072-12089

Publisher

IVYSPRING INT PUBL
DOI: 10.7150/thno.51231

Keywords

Hypopharyngeal squamous cell carcinoma; N6-methyladenosine (m(6)A) modification; YTHDF1; Iron metabolism; TFRC

Funding

  1. Natural Science Foundation of Zhejiang Province [LY21H160031]
  2. National Natural Science Foundation of China [62071415, 81903160]
  3. Medical Health Science and Technology Project of Zhejiang Provincial Health Commission [2019336033, 2020367813]

Ask authors/readers for more resources

Background: Among head and neck squamous cell carcinomas (HNSCCs), hypopharyngeal squamous cell carcinoma (HPSCC) has the worst prognosis. Iron metabolism, which plays a crucial role in tumor progression, is mainly regulated by alterations to genes and post-transcriptional processes. The recent discovery of the N6-methyladenosine (m(6)A) modification has expanded the realm of previously undiscovered post-transcriptional gene regulation mechanisms in eukaryotes. Many studies have demonstrated that m(6)A methylation represents a distinct layer of epigenetic deregulation in carcinogenesis and tumor proliferation. However, the status of m(6)A modification and iron metabolism in HPSCC remains unknown. Methods: Bioinformatics analysis, sample analysis, and transcriptome sequencing were performed to evaluate the correlation between m(6)A modification and iron metabolism. Iron metabolic and cell biological analyses were conducted to evaluate the effect of the m(6)A reader YTHDF1 on HPSCC proliferation and iron metabolism. Transcriptome-wide m(6)A-seq and RIP-seq data were mapped to explore the molecular mechanism of YTHDF1 function in HPSCC. Results: YTHDF1 was found to be closely associated with ferritin levels and intratumoral iron concentrations in HPSCC patients at Sir Run Run Shaw Hospital. YTHDF1 induced-HPSCC tumorigenesis depends on iron metabolism in vivo in vitro. Mechanistically, YTHDF1 methyltransferase domain interacts with the 3'UTR and 5'UTR of TRFC mRNA, then further positively regulates translation of m(6)A-modified TFRC mRNA. Gain-of-function and loss-of-function analyses validated the finding showing that TFRC is a crucial target gene for YTHDF1-mediated increases in iron metabolism. Conclusion: YTHDF1 enhanced TFRC expression in HPSCC through an m(6)A-dependent mechanism. From a therapeutic perspective, targeting YTHDF1 and TFRC-mediated iron metabolism may be a promising strategy for HPSCC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available