4.5 Article

The Tres Arroyos Granitic Aplite-Pegmatite Field (Central Iberian Zone, Spain): Petrogenetic Constraints from Evolution of Nb-Ta-Sn Oxides, Whole-Rock Geochemistry and U-Pb Geochronology

Journal

MINERALS
Volume 10, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/min10111008

Keywords

columbite-tantalite group minerals; cassiterite; aplite-pegmatite; U-Pb geochronology; Tres Arroyos; Central Iberian Zone

Funding

  1. Spanish Ministry of Economy, Industry and Competitiveness [RTI2018-094097-B-100]
  2. ERDF
  3. University of the Basque Country UPV/EHU [GIU18/084]
  4. European Union [869274]
  5. UPV/EHU

Ask authors/readers for more resources

Abundant Li-Cs-Ta aplite-pegmatite dykes were emplaced in the western Central Iberian Zone of the Iberian Massif during the Variscan Orogeny. Their origin and petrogenetic relationships with the widespread granitoids have led to a currently rekindled discussion about anatectic vs. granitic origin for the pegmatitic melts. To deal with these issues, the aplite-pegmatite dykes from the Tres Arroyos area, which constitute a zoned pegmatitic field related to the Nisa-Alburquerque granitic batholith, have been studied. This work comprises a complete study of Nb-Ta-Sn oxides' mineralogy, whole-rock geochemistry, and U-Pb geochronology of the aplite-pegmatites that have been grouped as barren, intermediate, and Li-rich. The most abundant Nb-Ta-Sn oxides from Tres Arroyos correspond to columbite-(Fe), columbite-(Mn) and cassiterite. Niobium-Ta oxides show a marked increase in the Mn/(Mn+Fe) ratio from the barren aplite-pegmatites up to the Li-rich bodies, whereas variations in the Ta/(Ta+Nb) ratio are not continuous. The probable factors controlling fractionation of Mn/Fe and Ta/Nb reflected in Nb-Ta oxides may be attributed to the crystallization of tourmaline, phosphates and micas. The lack of a progressive Ta/Nb increase with the fractionation may be also influenced by the high F and P availability in the parental pegmatitic melts. Most of the primary Nb-Ta oxides would have crystallized by punctual chemical variations in the boundary layer, whereas cassiterite formation would be related to an undercooling of the system. Whole-rock composition of the distinguished lithotypes reflects similar tendencies to those observed in mineral chemistry, supporting a single path of fractional crystallization from the parental Nisa-Alburquerque monzogranite up to the most evolved Li-rich aplite-pegmatites. The age of 305 +/- 9 Ma, determined by LA-ICP-MS U-Pb dating of columbite-tantalite oxides, reinforces the linkage of the studied aplite-pegmatites and the cited parental monzogranite.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available