4.7 Article

A Facile Synthesis of Novel Amorphous TiO2 Nanorods Decorated rGO Hybrid Composites with Wide Band Microwave Absorption

Journal

NANOMATERIALS
Volume 10, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/nano10112141

Keywords

amorphous TiO2; rGO; microwave absorption; complex permittivity; impedance matching; quarter-wavelength matching model

Funding

  1. National Natural Science Foundation of China [51972039, 51803018, 51661145025]
  2. LiaoNing Revitalization Talents Program [XLYC1902122]

Ask authors/readers for more resources

Amorphous structures may play important roles in achieving highly efficient microwave absorption performance due to the polarization losses induced by the disorders, vacancies and other functional groups existed in them. Herein, a kind of amorphous TiO2/rGO composite (a-TiO2/rGO) was successfully fabricated via a facile one-step solvothermal method. The complex permittivity of the composites can be regulated by adjusting the addition of precursor solution. The minimum reflection loss of a-TiO2/rGO composites reached -42.8 dB at 8.72 GHz with a thickness of 3.25 mm, and the widest efficient absorption bandwidth (EAB) was up to 6.2 GHz (11.8 to 18 GHz) with a thickness of only 2.15 mm, which achieved the full absorption in Ku band (12 to 18 GHz). Furthermore, the EAB was achieved ranging from 3.97 to 18 GHz by adjusting the thickness of the absorber, covering 87.7% of the whole radar frequency band. It is considered that the well-matched impedance, various polarization processes, capacitor-like structure and conductive networks all contributed to the excellent microwave absorption of a-TiO2/rGO. This study provides reference on constructing amorphous structures for future microwave absorber researches and the as-prepared a-TiO2/rGO composites also have great potential owing to its facile synthesis and highly efficient microwave absorption.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available