4.5 Article

Mild thermolytic solvolysis of technical lignins in polar organic solvents to a crude lignin oil

Journal

SUSTAINABLE ENERGY & FUELS
Volume 4, Issue 12, Pages 6212-6226

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0se01016b

Keywords

-

Funding

  1. European Interreg V Flanders
  2. European Regional Development Fund (ERDF)
  3. province of Limburg
  4. Dutch Ministry of Economy
  5. province of Brabant

Ask authors/readers for more resources

A mild thermal solvolysis process using alcohols for the valorization of technical Protobind soda lignin into crude lignin oil (CLO) is presented. The solubilization process results in lower molecular weight lignin fragments (1250-1550 g mol(-1)cf. 2500 g mol(-1) of parent lignin), while rejecting heavy compounds and other solid impurities. The influence of the reaction temperature (100-350 degrees C), residence time (0.5-4 h), lignin : solvent ratio (1 : 15-1 : 2 w/v) and alcohol solvent (methanol, ethanol, 1-propanol, 1-butanol, and 1-octanol) on the amount and type of products is investigated. At a high lignin loading (ratio < 1 : 5 w/v) and under optimum conditions for lignin solubilization (T = 200 degrees C, t = 0.5 h), the condensation reactions and solvent consumption are minimized. Methanol exhibits the highest solvolytic efficacy resulting in an overall lignin solubilization degree of 61 wt%, which includes some heavier lignin fractions originating from condensation reactions. The other alcohols resulted in a lignin solubilization degree of 57 wt% for ethanol, 53 wt% for 1-propanol, 51 wt% for 1-butanol and 38 wt% for 1-octanol. The solvent losses based on GC-MS analysis of the obtained CLOs were 1.1 wt% for methanol, 1.4 wt% for ethanol and 2.2 wt% for 1-butanol. Hansen solubility parameters are employed to discuss the effect of solvent on the solubilization process. Gel permeation chromatography and heteronuclear single quantum coherence NMR of solubilized fractions revealed cleavage of beta-O-4 bonds during thermal solvolysis, explaining the molecular weight reduction. Methanol is the most favourable solvent and is utilized in solubilization of 5 different biorefinery lignins. In all cases, this led to CLO with a lower molecular weight of the lignin fragments, a lower polydispersity and an increased hydroxyl group content.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available