4.5 Article

Peptide modified polycations with pH triggered lytic activity for efficient gene delivery

Journal

BIOMATERIALS SCIENCE
Volume 8, Issue 22, Pages 6301-6308

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0bm01231a

Keywords

-

Funding

  1. National Natural Science Foundation of China [NSFC 51803165]
  2. Natural Science Basic Research Plan in Shaanxi Province of China [2019JQ-167]
  3. Young Talent Support Plan of Xi'an Jiaotong University
  4. Fundamental Research Funds for the Central Universities [xjj2018050]
  5. Opening Project of Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University [2019LHM-KFKT007]

Ask authors/readers for more resources

Endo/lysosome entrapment is the key barrier for gene delivery using synthetic polycations. Although the introduction of a membrane-lytic peptide into polycations could facilitate efficient endo/lysosome release and improve gene delivery efficiency, it is always accompanied by serious safety concerns. In this work, the widely used polycations, poly(2-dimethylaminoethyl methacrylate (PDMAEMA), poly(l-lysine) (PLL) and polyethylenimine (PEI), are modified with a pH-sensitive peptide (C6M3) with selective lytic activity to produce three functional polycations to address the issue of endo/lysosome entrapment and facilitate efficient gene transfer. Hemolysis study shows that the functionalized polycations show good biocompatibility toward red blood cells at neutral pH, and exhibit potent membrane lysis activity under acidic conditions, which are both on-demand for the ideal gene carriers. In vitro transfection studies demonstrate that the peptide modified polycations mediate promising gene delivery efficiency with the luciferase plasmid and the green fluorescence protein plasmid in HeLa cells compared to the parent polycations. Owing to the facile preparation and selective lysis activity of the C6M3 modified polycations, these smart gene vectors may be good candidates for the transfer of various nucleic acids and further clinical gene therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available