4.7 Article

Channel Measurement, Simulation, and Analysis for High-Speed Railway Communications in 5G Millimeter-Wave Band

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TITS.2017.2771559

Keywords

Channel measurement; high speed railway communication; intelligent transportation systems; MHN; millimeter wave; ray tracing simulation

Funding

  1. Institute for Information and communications Technology Promotion grant through the Korean Government (MSIT) (Development of 5G Mobile Communication Technologies for Hyper-Connected Smart Services) [2014-0-00282]

Ask authors/readers for more resources

More people prefer to using rail traffic for travel or for commuting due to its convenience and flexibility. As the record of the maximum speed of rail has been continuously broken and new applications are foreseen, the high-speed railway (HSR) communication system requires higher data rate with seamless connectivity, and therefore, the system design faces new challenges to support high mobility. Millimeter-wave (mmWave) technologies are considered as candidates to provide wideband communication. However, mmWave is rarely explored in HSR scenarios. In this paper, channel characteristics are studied in the 56 mmWave band for typical HSR scenarios, including urban, rural, and tunnel, with straight and curved route shapes. Based on the wideband measurements conducted in the tunnel scenario by using the mobile hotspot network system, a 3-D ray tracer (RT) is calibrated and validated to explore more channel characteristics in different HSR scenarios. Through extensive RT simulations with 500-MHz bandwidth centered at 25.25 GHz, the power contributions of the multipath components are studied, and the dominant reflection orders are determined for each scenario. Path loss is analyzed, and the breakpoint is observed. Other key parameters, such as Doppler shifts, coherence time, polarization ratios, and so on, are studied. Suggestions on symbol rate, sub-frame bandwidth, and polarization configuration are provided to guide the 56 mmWave communication system design in typical HSR scenarios.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available