4.8 Article

Managing Demand for Plug-in Electric Vehicles in Unbalanced LV Systems With Photovoltaics

Journal

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
Volume 13, Issue 3, Pages 1057-1067

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TII.2017.2675481

Keywords

Demand response (DR); decision making; energy management system (EMS); power distribution systems; plug-in electric vehicles (PEVs); photovoltaic (PV)

Ask authors/readers for more resources

Although the future impact of plug-in electric vehicles (PEVs) on distribution grids is disputed, all parties agree that mass operation of PEVs will greatly affect load profiles and grid assets. The large-scale penetration of domestic energy storage, such as with photovoltaics (PVs), into the edges of low-voltage grids is increasing the amount of customer-generated electricity. Distribution grids, which are inherently unbalanced, tend to become even more so with the uneven spread of PVs and PEVs. In combination, PEVs and local generation could provide voltage support for distribution networks, and support increased penetration. This paper develops an interactive energy management system for incorporating PEVs in demand response (DR). Using this system, owners can immediately choose whether they want to discharge their PEV battery back into the grid. The system not only provides owners with a flexible scheme for contributing to DR but also ensures that, through real-time collaboration of PEVs and PVs, the three-phase grid operates within acceptable voltage unbalance. An extensive performance evaluation using MATLAB/GAMS simulation of the 123-bus test system verifies the effectiveness of the proposed approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available