4.7 Article

A simple strategy for selective photocatalysis degradation of organic dyes through selective adsorption enrichment by using a complex film of CdS and carboxylmethyl starch

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 274, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2020.111184

Keywords

Complex film; Photocatalytic degradation of dyes; Selective photocatalysis degradation; Selective adsorption; Selective degradation mechanisms

Funding

  1. National Natural Science Foundation of China [51778279]

Ask authors/readers for more resources

Resource utilization of wastes through effective separation is a major challenge in the field of water and wastewater treatment. Photocatalytic degradation is a powerful water treatment technology but has no selectivity in degradation of various coexisting contaminants due to its strong oxidation. In this work, a complex film composed of CdS and carboxylmethyl starch (CdS/CMS) was designed and fabricated using in situ formation method. The morphology, composition, and optical property of this film were investigated in detail by various characterization methods. CdS was well distributed in the starch matrix, and the absorption wavelength of this film was still located in the visible light region. This starch-based complex film was used to remove various organic dyes [methylene blue (MB), crystal violet (CV), and rhodamine B (RhB)] from aqueous solutions by two consecutive processes of adsorption enrichment and photocatalysis degradation. 0.1 g of CdS/CMS film can remove approximately 86.72% of MB and 81.03% of CV in 120 min. CdS/CMS still exhibited evidently selective photocatalysis degradation of MB and CV in MB/RhB and CV/RhB binary systems, respectively, and had nearly no effect on RhB. The cationic groups on MB and CV can effectively interact with negatively carboxyl groups of CMS via electrostatic interactions, causing their good affinities; but the anionic groups on RhB had an electrostatic repulsion to the starch matrix. The considerably different affinities of various dyes to CMS triggered strong adsorption preferences and great selective degradation effectiveness. The selectivity of CdS/CMS could not be influenced by pH and some coexisting inorganic anions. Furthermore, this complex film did not require regeneration and could be reused directly with low removal capacity loss. Therefore, a new and simple strategy was provided to realize the effective separation and recovery of target contaminants in water by photocatalytic degradation technology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available