4.7 Article

Antimetabolite pemetrexed primes a favorable tumor microenvironment for immune checkpoint blockade therapy

Journal

JOURNAL FOR IMMUNOTHERAPY OF CANCER
Volume 8, Issue 2, Pages -

Publisher

BMJ PUBLISHING GROUP
DOI: 10.1136/jitc-2020-001392

Keywords

immunotherapy; tumor microenvironment; drug therapy; combination; costimulatory and inhibitory t-cell receptors; tumor escape

Funding

  1. Ministry of Science and Technology in Taiwan [MOST-108-3114-Y-001-002, MOST-109-2314-B-002-254, MOST-109- 2314-B-002-277, MOST-108-2320-B-001-007-MY2, MOST-108-2319-B-492-001, MOST-109-0210-01-18-02]
  2. Academia Sinica in Taiwan [AS-SUMMIT-109, AS-KPQ- 109-BioMed, 2325-1080010]

Ask authors/readers for more resources

Background The immune checkpoint blockade (ICB) targeting programmed cell death-1 (PD-1) and its ligand (PD-L1) has been proved beneficial for numerous types of cancers, including non-small-cell lung cancer (NSCLC). However, a significant number of patients with NSCLC still fail to respond to ICB due to unfavorable tumor microenvironment. To improve the efficacy, the immune-chemotherapy combination with pemetrexed, cis/carboplatin and pembrolizumab (anti-PD-1) has been recently approved as first-line treatment in advanced NSCLCs. While chemotherapeutic agents exert beneficial effects, the underlying antitumor mechanism(s) remains unclear. Methods Pemetrexed, cisplatin and other chemotherapeutic agents were tested for the potential to induce PD-L1 expression in NSCLC cells by immunoblotting and flow cytometry. The ability to prime the tumor immune microenvironment was then determined by NSCLC/T cell coculture systems and syngeneic mouse models. Subpopulations of NSCLC cells responding differently to pemetrexed were selected and subjected to RNA-sequencing analysis. The key signaling pathways were identified and validated in vitro and in vivo. Results Pemetrexed induced the transcriptional activation of PD-L1 (encoded by CD274) by inactivating thymidylate synthase (TS) in NSCLC cells and, in turn, activating T-lymphocytes when combined with the anti-PD-1/PD-L1 therapy. Nuclear factor kappa B (NF-kappa B) signaling was activated by intracellular reactive oxygen species (ROSs) that were elevated by pemetrexed-mediated TS inactivation. The TS-ROS-NF-kappa B regulatory axis actively involves in pemetrexed-induced PD-L1 upregulation, whereas when pemetrexed fails to induce PD-L1 expression in NSCLC cells, NF-kappa B signaling is unregulated. In syngeneic mouse models, the combinatory treatment of pemetrexed with anti-PD-L1 antibody created a more favorable tumor microenvironment for the inhibition of tumor growth. Conclusions Our findings reveal novel mechanisms showing that pemetrexed upregulates PD-L1 expression and primes a favorable microenvironment for ICB, which provides a mechanistic basis for the combinatory chemoimmunotherapy in NSCLC treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available