4.7 Article

Low-Rank Embedding for Robust Image Feature Extraction

Journal

IEEE TRANSACTIONS ON IMAGE PROCESSING
Volume 26, Issue 6, Pages 2905-2917

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIP.2017.2691543

Keywords

Robust linear dimensionality reduction; image feature extraction; subspace learning; low rank representation

Funding

  1. Natural Science Foundation of China [61573248, 61375012, 61362031, 61602270, 61672358]
  2. China Postdoctoral Science Foundation [2016M590812, 2016M590100]
  3. Research Grant of The Hong Kong Polytechnic University [G-UC42]
  4. Shenzhen Municipal Science and Technology Innovation Council [JCYJ20150324141711637, JCYJ20160429182058044]

Ask authors/readers for more resources

Robustness to noises, outliers, and corruptions is an important issue in linear dimensionality reduction. Since the sample-specific corruptions and outliers exist, the class-special structure or the local geometric structure is destroyed, and thus, many existing methods, including the popular manifold learning-based linear dimensionality methods, fail to achieve good performance in recognition tasks. In this paper, we focus on the unsupervised robust linear dimensionality reduction on corrupted data by introducing the robust low-rank representation (LRR). Thus, a robust linear dimensionality reduction technique termed low-rank embedding (LRE) is proposed in this paper, which provides a robust image representation to uncover the potential relationship among the images to reduce the negative influence from the occlusion and corruption so as to enhance the algorithm's robustness in image feature extraction. LRE searches the optimal LRR and optimal subspace simultaneously. The model of LRE can be solved by alternatively iterating the argument Lagrangian multiplier method and the eigendecomposition. The theoretical analysis, including convergence analysis and computational complexity, of the algorithms is presented. Experiments on some well-known databases with different corruptions show that LRE is superior to the previous methods of feature extraction, and therefore, it indicates the robustness of the proposed method. The code of this paper can be downloaded from http://www.scholat. com/laizhihui.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available