4.7 Article

Self-Taught Feature Learning for Hyperspectral Image Classification

Journal

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
Volume 55, Issue 5, Pages 2693-2705

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2017.2651639

Keywords

Autoencoder; deep learning; feature learning; hyperspectral imaging; independent component analysis (ICA); self-taught learning

Ask authors/readers for more resources

In this paper, we study self-taught learning for hyperspectral image (HSI) classification. Supervised deep learning methods are currently state of the art for many machine learning problems, but these methods require large quantities of labeled data to be effective. Unfortunately, existing labeled HSI benchmarks are too small to directly train a deep supervised network. Alternatively, we used self-taught learning, which is an unsupervised method to learn feature extracting frameworks from unlabeled hyperspectral imagery. These models learn how to extract generalizable features by training on sufficiently large quantities of unlabeled data that are distinct from the target data set. Once trained, these models can extract features from smaller labeled target data sets. We studied two self-taught learning frameworks for HSI classification. The first is a shallow approach that uses independent component analysis and the second is a three-layer stacked convolutional autoencoder. Our models are applied to the Indian Pines, Salinas Valley, and Pavia University data sets, which were captured by two separate sensors at different altitudes. Despite large variation in scene type, our algorithms achieve state-of-the-art results across all the three data sets.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available