4.6 Article

Performance of Graded Bandgap HgCdTe Avalanche Photodiode

Journal

IEEE TRANSACTIONS ON ELECTRON DEVICES
Volume 64, Issue 3, Pages 1146-1152

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TED.2017.2650412

Keywords

Bandwidth; electron-injection avalanche photodiode (e-APD); gain; HgCdTe

Ask authors/readers for more resources

This paper reports the performance of midwave infrared (MWIR) electron-injection avalanche photodiode (e-APD) fabricated using graded bandgap HgCdTe epilayers. Carrier transport in the e-APD is dominated by drift transport due to the built-in electric field associated with gradient in the bandgap. Carriers encounter fewer collision events before entering the multiplication region as the dead space effect is reduced. On-set of generation and multiplication processes is controlled more effectively. High gain indicates a reduced in-elastic scattering by phonon-emission due to gradient. Quantum efficiency above 80% is achieved in merely 2-3-mu m-thick absorbing layer because of more efficient collection of the photogenerated carriers. Lower generation volume is beneficial in terms of low dark current. The generation is confined in the vicinity of the multiplication region. Generated carriers are readily evacuated from the absorber region under the built-in electric field. An order of magnitude improvement over the state-of-the art performance in MWIR e-APD is achieved by introducing a controlled energy bandgap gradient in the HgCdTe epilayers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available