4.7 Article

A Tone-Based AoA Estimation and Multiuser Precoding for Millimeter Wave Massive MIMO

Journal

IEEE TRANSACTIONS ON COMMUNICATIONS
Volume 65, Issue 12, Pages 5209-5225

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCOMM.2017.2742510

Keywords

Massive MIMO; millimeter wave; channel estimation; multiuser precoding; phase quantization error

Funding

  1. Australia Research Council Discovery Project [DP160104566]
  2. Australian Research Council's Discovery Early Career Researcher Award [DE150100636]
  3. Australian Research Council's Discovery Early Career Researcher Award funding scheme [DE170100137]
  4. Australian Research Council [DE150100636] Funding Source: Australian Research Council

Ask authors/readers for more resources

In this paper, we investigate channel estimation and multiuser downlink transmission of a time division duplex massive multiple-input multiple-output (MIMO) system in millimeter wave (mmWave) channels. We propose a tone-based linear search algorithm to facilitate the estimation of angle-of-arrivals (AoAs) of the strongest line-of-sight (SLOS) channel component as well as the scattering components of the users at the base station. Based on the estimated AoAs, we reconstruct the SLOS component and scattering components of the users for downlink transmission. We then derive the achievable rates of maximum-ratio transmission (MRT) and zero-forcing (ZF) precoding based on the SLOS component and the SLOS-plus-scattering components (SLPS), respectively. Taking into account the impact of pilot contamination, our analysis and simulation results show that the SLOS-based MRT can achieve higher data rate than that of the traditional pilot-aided-CSI-based (PAC-based) MRT, under the same mean square errors of channel estimation. As for ZF precoding, the achievable rates of the SLPS-based and the PAC-based are identical. Furthermore, we quantify the achievable rate degradation of the SLOS-based MRT precoding caused by phase quantization errors in the large number of antennas regime. We show that the impact of phase quantization errors on the considered systems cannot be mitigated by increasing the number of antennas and therefore the resolutions of radio frequency phase shifters is critical for the design of efficient mmWave massive MIMO systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available