4.7 Article

Antibacterial tooth surface created by laser-assisted pseudo-biomineralization in a supersaturated solution

Publisher

ELSEVIER
DOI: 10.1016/j.msec.2020.111170

Keywords

Hydroxyapatite; Fluoride; Calcium phosphate (CaP); Dentin; Laser; Biomimetic process; Coating

Funding

  1. KAKENHI [JP17H02093, JP19K22991, JP20H04541]
  2. Japan Society for the Promotion of Science (JSPS)

Ask authors/readers for more resources

A technique for implementing biocompatible and antibacterial functions to a targeted region on tooth surfaces has potential in dental treatments. We have recently demonstrated pseudo-biomineralization, i.e., the growth of an apatite layer on a human dentin substrate by a laser-assisted biomimetic (LAB) process, based on pulsed laser irradiation in a supersaturated CaP solution. In this study, pseudo-biomineralization was induced in the presence of fluoride ions using the LAB process in order to fabricate an antibacterial fluoride-incorporated apatite (FAp) layer on the dentin surface. After processing for 30 min, a micron-thick FAp layer was formed heterogeneously at the laser-irradiated solid-liquid interface via pseudo-biomineralization. A time-course study revealed that the LAB process first eliminated the pre-existing organic layer, while allowing fluoride incorporation into the dentin surface within 1 min. Within 5 min, FAp nanocrystals precipitated on the dentin surface. Within 30 min, these nanocrystals acquired a pillar-like structure that was weakly oriented in the direction normal to the substrate surface to form a dense micron-thick layer. This layer was integrated seamlessly with the underlying dentin without any apparent gaps. The FAp layer exhibited antibacterial activity against a major oral bacterium, Streptococcus mutans. The proposed LAB process is expected to be a useful new tool for tooth surface functionalization via facile and area-specific pseudo-biomineralization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available