4.4 Article

Conceptual Design and Operating Characteristics of Multi-Resonance Antennas in the Wireless Power Charging System for Superconducting MAGLEV Train

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TASC.2017.2662233

Keywords

Magnetic levitation train; multi antenna coils; superconducting resonance receiver; wireless power transfer

Funding

  1. Basic Science Research Program through the National Research Foundation of Korea - Korean Ministry of Education, Science, and Technology [2015R1D1A1A01058286]
  2. National Research Council of Science & Technology (NST), Republic of Korea [PK1701A] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  3. National Research Foundation of Korea [2015R1D1A1A01058286] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Recently super high-speed magnetic levitation (MAGLEV) using high-temperature superconducting (HTS) magnet has been expected as next-generation transportation since superconducting magnet can keep mighty levitation force. The superconducting magnet at MAGLEV train should be continually charged with high power in order to keep stronger and stable levitation force. Practically, since conventional power supply unit should be attached to HTS magnet in the MAGLEV, a large thermal loss is indispensably caused by power transfer wires and joints, those have been one of essential obstacles in the superconducting MAGLEV train. As the wireless power transfer (WPT) technology based on strongly resonance-coupled method realizes large power charging without any wires through the air, there are advantages compared with the wired counterparts, such as convenient, safety, and fearless transmission of power. From this reason, the WPT systems have started to be applied to the wireless charging for various power applications, such as transportations (train, underwater ship, electric vehicle). However, it has obstacles to commercialize, such as delivery distance and efficiency. To solve the problems, authors proposed the technical fusion using HTS resonance coil in the WPT system since the superconducting wire has merits a larger current density and higher Q-value than normal conducting wire. In this study, authors described the conceptual design of HTS receiver (Rx) coil with multi-copper antenna (Tx) coils. The priority characteristics of moving HTS receivers under multi-copper Tx coils are compared with and various copper Rx coils with radio frequency power of 370 kHz below 300W.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available