4.6 Article

Selective noise resistant gate

Journal

PHYSICAL REVIEW B
Volume 102, Issue 24, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.102.245408

Keywords

-

Funding

  1. Israeli Science Foundation (ISF) [1563/16]

Ask authors/readers for more resources

Realizing individual control on single qubits in a spin-based quantum register is an ever-increasing challenge due to the close proximity of the qubits' resonance frequencies. Current schemes typically suffer from an inherent trade-off between fidelity and qubits selectivity. Here, we report on a scheme which combines noise protection by dynamical decoupling and magnetic gradient based selectivity, to enhance both the fidelity and the selectivity. With a single nitrogen-vacancy center in diamond, we experimentally demonstrate quantum gates with fidelity = 0.9 +/- 0.02 and a 50 - kHz spectral bandwidth, which is almost an order of magnitude narrower than the unprotected bandwidth. Our scheme will enable selective control of an individual nitrogen-vacancy qubit in an interacting qubits array using relatively moderate gradients of about 1 mG/nm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available