4.6 Article

A simplified approach for the metal-free polymerization of propylene oxide

Journal

RSC ADVANCES
Volume 10, Issue 71, Pages 43389-43393

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ra08970b

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [358283783 - SFB 1333]

Ask authors/readers for more resources

Triethyl borane (Et3B), in combination with phosphazene-type superbases, has recently emerged as a powerful co-catalyst for the anionic polymerization of epoxides. Here, it is demonstrated that the monomer-activating property of Et3B can also compensate for the application of much gentler organobases. This not only results in simpler setups, but also significantly reduces nucleophilicity/basicity-derived side reactions. Notably, this principle applies to such a degree that simple 4-dimethylaminopyridine (DMAP) or 1,4-diazabicyclo[2.2.2]octane (DABCO) can serve to polymerize propylene oxide (PO). With suitable initiators, this results for example in very well-defined block copolyethers ((M) <= 1.03) without requiring work-up to remove side products such as PPO homopolymer. Performance correlates nicely with the corresponding organobase proton affinities (PAs), and a limiting PA of 220-230 kcal mol(-1) was identified for successful PO polymerization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available