4.6 Review

Recent advances in transition metal-free catalytic hydroelementation (E = B, Si, Ge, and Sn) of alkynes

Journal

RSC ADVANCES
Volume 10, Issue 71, Pages 43539-43565

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ra07768b

Keywords

-

Funding

  1. Li Ka Shing Foundation [2020LKSFG05A]

Ask authors/readers for more resources

Catalytic hydroelementation of alkynes mainly with hydroboranes and hydrosilanes gives a straightforward and atom-economical access to a wide range of vinylmetalloids, which are used as synthetically useful and/or reactive species in both synthetic and materials chemistry. Thus far, although numerous transition metal catalysts with well-defined ligand systems have been developed for alkyne hydroelementation, the employed catalysts are mainly based on expensive and potentially toxic metals such as Rh, Pt, and Ir, and their conventional inner-sphere hydride transfer pathways are susceptible to reaction systems, often making it difficult to control the selectivity. In this regard, transition metal-free catalysts for hydroelementation (E = B, Si, etc.) have intensively been reported as an alternative to the conventional metal catalytic regimes over the last decade. In this review, we describe the recent advances in transition metal-free catalytic procedures for alkyne hydroelementation using hydrides based on Si, B, Sn, and Ge with strong emphasis on the variation in the catalytic working mode depending on the intrinsic nature of the reaction systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available