4.7 Review

Microcomputed tomography-based characterization of advanced materials: a review

Journal

MATERIALS TODAY ADVANCES
Volume 8, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.mtadv.2020.100084

Keywords

Micro-CT; X-ray; Bioinspired materials; Energy and environment; Structural materials; Porous rock; Energy storage; Filtration

Funding

  1. Hungarian National Research, Development and Innovation Office [GINOP-2.3.3-15-2016-00010, K126065]

Ask authors/readers for more resources

Micro-computed tomography (CT) is an X-ray tomography technique with (sub)micron resolution, typically using an X-ray tube with cone-beam geometry as a source and a rotating sample holder. While conventional CT maintained a strong position in life science and low-resolution high-energy CT became widespread in industrial quality control, micro-CT has enjoyed a boost in interest from the materials science research community in the past decade. The key reasons behind this are the versatile, non-destructive nature of micro-CT as a characterization method offering also in situ and in operando possibilities and the fact that micro-CT has become indispensable in developing and verifying computational material models as well. The goal of the present mini review is to give a concise introduction of the method to newcomers and showcase a few impressive recent results that can help in devising even more innovative future uses of micro-CT. After a brief overview of alternative three-dimensional imaging techniques, we review the basics of micro-CT covering important concepts such as resolution, magnification, and the Hounsfield unit. The second part of the article summarizes characteristic materials science micro-CT applications in bioinspired materials, structural materials, porous natural materials, energy storage, energy conversion, and filtration. (C) 2020 The Author(s). Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available