4.7 Article

Enhanced photodegradability of PVC plastics film by codoping nano-graphite and TiO2

Journal

POLYMER DEGRADATION AND STABILITY
Volume 181, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.polymdegradstab.2020.109332

Keywords

Nano-G/TiO2/PVC composite film; Nano-graphite; TiO2; Photodegradation; UV

Funding

  1. Department of Science & Technology of Hainan Province, P.R.China [217101, ZDYF2019140, ZDYF2017011, ZDYF2018170]

Ask authors/readers for more resources

A novel photodegradable Nano-G/TiO2/PVC composite film was prepared by codoping nano-graphite (Nano-G) and TiO2 photocatalyst in Polyvinyl chloride (PVC) plastic. The Characterization tests were performed by using ultraviolet-visible spectroscopy (UV-vis), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), gel permeation chromatography (GPC) and physical and mechanical properties. Compared with TiO2/PVC, Nano-G/PVC and PVC film, the Nano-G/TiO2/PVC composite film showed higher photodegradability. The weight loss rates of Nano-G/PVC (Nano-G 1 wt%), TiO2/PVC (TiO2 1 wt%) and Nano-G/TiO2/PVC (Nano-G 1 wt%, TiO2 1 wt%) films after the UV irradiation for 30 h were 7.68%, 8.94% and 17.24%, respectively, while that of PVC was only 2.12%. For the Nano-G/TiO2/PVC composite film, the optimal doping amount of nano-graphite is 1 wt%. The decline rates of Mw and Mn of Nano-G/TiO2/PVC (Nano-G 1 wt%, TiO2 1 wt%) composite film were 12.93% and 61.97%, respectively, which were much higher than that of PVC. Nano-graphite can effectively improve the migration and separation of TiO2 photogenerated electrons, improving the photodegradation rate of PVC. The mechanism of the NanoG/TiO2/PVC composite film photocatalytic degradation was proposed. The photocatalytic technology is a feasible and effective way to solve white pollution. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available