4.6 Article

A biodegradable block polyurethane nerve-guidance scaffold enhancing rapid vascularization and promoting reconstruction of transected sciatic nerve in Sprague-Dawley rats

Journal

JOURNAL OF MATERIALS CHEMISTRY B
Volume 8, Issue 48, Pages 11063-11073

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0tb02069a

Keywords

-

Funding

  1. National Natural Science Foundation of China [82070695, 81900619]
  2. Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease [2019B030301004]
  3. Postdoctoral Science Foundation of China [2018M630936, 2018M643252]
  4. SIAT Innovation Program for Excellent Young Researchers [Y8G032]
  5. Chinese Academy of Sciences President's International Fellowship Initiative [2019PM0006]

Ask authors/readers for more resources

Reconstruction of peripheral nerve defects with tissue engineered nerve scaffolds is an exciting field of biomedical research and holds potential for clinical application. However, due to poor neovascularization after the implantation, nerve regeneration is still not satisfactory, especially for large nerve defects. These obstacles hinder the investigation of basic neurobiological principles and development of a wide range of treatments for peripheral nerve diseases. Herein, we designed an amphiphilic alternating block polyurethane (abbreviated as PU) copolymer-based nerve guidance scaffold, which has good Schwann cell compatibility, and more importantly, a rapid vascularization of the scaffold in vivo. In the sciatic nerve transection model of SD rats, vascularized PU nerve guidance scaffolds induced rapid regeneration of nerve fibers and axons along the scaffold. Through the analysis of nerve electrophysiology, sciatic nerve functional index, histology, and immunofluorescence related to angiogenesis, we determined that PU with rapid vascularization function enhances recovery and re-obtains nerve conduction function. Our study points out a new strategy of using nerve tissue engineering scaffolds to treat large nerve defects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available