4.2 Article

Self-consistent quantum field theory for the characterization of complex random media by short laser pulses

Journal

PHYSICAL REVIEW RESEARCH
Volume 2, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.2.013324

Keywords

-

Ask authors/readers for more resources

We present a quantum field theoretical method for the characterization of disordered complex media with short laser pulses in an optical coherence tomography setup (OCT). We solve this scheme of coherent transport in space and time with weighted essentially nonoscillatory methods (WENO). WENO is preferentially used for the determination of highly nonlinear and discontinuous processes including interference effects and phase transitions like Anderson localization of light. The theory determines spatiotemporal characteristics of the scattering mean free path and the transmission cross section that are directly measurable in time-of-flight (ToF) and pump-probe experiments. The results are a measure of the coherence of multiple scattering photons in passive as well as in optically soft random media. Our theoretical results of ToF are instructive in spectral regions where material characteristics such as the scattering mean free path and the diffusion coefficient are methodologically almost insensitive to gain or absorption and to higher-order nonlinear effects. Our method is applicable to OCT and other advanced spectroscopy setups including samples of strongly scattering mono- and polydisperse complex nano- and microresonators.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available