4.7 Article

An End-to-End Deep Learning Approach to Simultaneous Speech Dereverberation and Acoustic Modeling for Robust Speech Recognition

Journal

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING
Volume 11, Issue 8, Pages 1289-1300

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSTSP.2017.2756439

Keywords

End-to-end system; dereverberation; robust ASR; deep learning; joint training; microphone array

Ask authors/readers for more resources

We propose an integrated end-to-end automatic speech recognition (ASR) paradigm by joint learning of the frontend speech signal processing and back-end acoustic modeling. We believe that only good signal processing can lead to top ASR performance in challenging acoustic environments. This notion leads to a unified deep neural network (DNN) framework for distant speech processing that can achieve both high-quality enhanced speech and high-accuracy ASR simultaneously. Our goal is accomplished by two techniques, namely: (i) a reverberation-time-aware DNN based speech dereverberation architecture that can handle a wide range of reverberation times to enhance speech quality of reverberant and noisy speech, followed by (ii) DNN-based multicondition training that takes both clean-condition and multicondition speech into consideration, leveraging upon an exploitation of the data acquired and processed with multichannel microphone arrays, to improve ASR performance. The final end-to-end system is established by a joint optimization of the speech enhancement and recognition DNNs. The recent REverberant Voice Enhancement and Recognition Benchmark (REVERB) Challenge task is used as a test bed for evaluating our proposed framework. We first report on superior objective measures in enhanced speech to those listed in the 2014 REVERB Challenge Workshop on the simulated data test set. Moreover, we obtain the best single-system word error rate (WER) of 13.28% on the 1-channel REVERB simulated data with the proposed DNN-based pre-processing algorithm and clean-condition training. Leveraging upon joint training with more discriminative ASR features and improved neural network based language models, a low single-system WER of 4.46% is attained. Next, a new multi-channel-condition joint learning and testing scheme delivers a state-of-the-art WER of 3.76% on the 8-channel simulated data with a single ASR system. Finally, we also report on a preliminary yet promising experimentation with the REVERB real test data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available