4.7 Article

Unraveling the Origin of Interfacial Oxidation of InP-Based Quantum Dots: Implications for Bioimaging and Optoelectronics

Journal

ACS APPLIED NANO MATERIALS
Volume 3, Issue 12, Pages 12325-12333

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsanm.0c02814

Keywords

quantum dots; indium phosphide; interfacial oxidation; core/shell nanocrystals; flow synthesis

Funding

  1. DuPont Electronics Imaging [226772AC]
  2. National Science Foundation [1825356]
  3. Div Of Civil, Mechanical, & Manufact Inn
  4. Directorate For Engineering [1825356] Funding Source: National Science Foundation

Ask authors/readers for more resources

Indium phosphide core/shell nanocrystals hold promise to replace heavy-metal-based emissive materials for bioimaging and optoelectronic applications. Uniformity of the shell passivation and the interfacial defects are critical for achieving improved optical properties. A combination of Fourier-transform infrared spectroscopy (FTIR) and liquid and solid-state NMR spectroscopy revealed a strong correlation between interfacial oxidation and photoluminescence of InP-based core/shell quantum dots. Using an automated sequential shell growth approach enabled efficient flow synthesis of InP/ZnSe/ZnS quantum dots, exhibiting high-quantum yields and narrow emission line widths. Feeding individual precursors into the reactor channel in a sequential fashion combined with inline reaction monitoring enabled precise control over layer-by-layer shell passivation of the core particles. Our findings suggest that an unintentional aminolytic reaction between oleylamine and carboxylates (two most commonly used starting materials for colloidal synthesis) introduces oxidative defects during the shelling process, thus limiting their optical properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available