4.2 Article

Exploring helical phases of matter in bosonic ladders

Journal

PHYSICAL REVIEW RESEARCH
Volume 2, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.2.043433

Keywords

-

Funding

  1. Max Planck Graduate Center
  2. Deutsche Forschungsgesellschaft (DFG) [OSCAR 277810020 (RI 2345/2-1)]
  3. Villum Foundation [25310]
  4. China Scholarships Council [201906040093]
  5. Deutsche Forschungsgemeinschaft (DFG) within the CRC network TR 183 [277101999]

Ask authors/readers for more resources

Ladder models of ultracold atoms offer a versatile platform for the experimental and theoretical study of different phenomena and phases of matter linked to the interplay between artificial gauge fields and interactions. Strongly correlated helical states are known to appear for specific ratios of the particle and magnetic flux densities, and they can often be interpreted as a one-dimensional limit of fractional quantum Hall states, thus being called pretopological. Their signatures, however, are typically hard to observe due to the small gaps characterizing these states. Here we investigate bosonic ladder models at filling factor nu = 1. Based on bosonization, renormalization group, and matrix product state simulations we pinpoint two strongly correlated helical phases appearing at this resonance. We show that one of them can be accessed in systems with two-species hardcore bosons and on-site repulsions only, thus amenable for optical lattice experiments. Its signatures are sizable and stable over a broad range of parameters for realistic system sizes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available