4.7 Article

Dendrite-free Zn anodes enabled by functional nitrogen-doped carbon protective layers for aqueous zinc-ion batteries

Journal

DALTON TRANSACTIONS
Volume 49, Issue 48, Pages 17629-17634

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0dt03459b

Keywords

-

Funding

  1. National Natural Science Foundation of China [51702138, 51802127]
  2. Natural Science Foundation of Jiangsu Province [BK20160213]
  3. Postgraduate Research & Practice Innovation Program of Jiangsu Province [KYCX20-2358]

Ask authors/readers for more resources

Rechargeable aqueous zinc-ion batteries possess the merits of good environmental benignity, high operational safety and high energy density. Nevertheless, the practical application of zinc-ion batteries is severely obstructed by the inhomogeneous deposition of metallic Zn on the anode, which results in serious capacity fading, poor coulombic efficiency, and electrolyte consumption. Herein, we propose a simple strategy of constructing a functional nitrogen-doped carbon network coating layer on zinc foil for dendrite-free Zn stripping/plating. On one hand, the good conductivity of the artificial Zn/electrolyte interface can quickly balance the electric field and lower the nucleation overpotential. On the other hand, the porosity feature and functional groups of the protective layer can provide a fast Zn2+ transportation pathway and generate well-dispersed nucleation seeds. Therefore, the protective layer can effectively hamper the growth of metallic Zn dendrites and resist side reactions. The as-prepared N-C/Zn anode displays superior cycling stability (800 h at 2 mA cm(-2) with the capacity of 2 mA h cm(-2)) and a satisfactory coulombic efficiency of 98.76% during the Zn stripping/plating process. A long cycle life and high specific capacity (162.10 mA h g(-1) after 500 cycles at 2.0 A g(-1)) are also obtained for N-C/Zn parallel to ZnSO4 parallel to V2O5 full cells. The strategy provides a facile and effective opportunity for constructing high-performance rechargeable aqueous zinc-ion batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available