4.6 Article

Can a Transport Model Predict Inverse Signatures in Lithium Metal Batteries Without Modifying Kinetics?

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 167, Issue 16, Pages -

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1945-7111/abd2ae

Keywords

moving boundary; lithium metal; voltage inverse signature

Funding

  1. U.S. DOE Office of Electricity through PNNL [DEAC05-76RL01830, 475525]

Ask authors/readers for more resources

In this study, a one-dimensional transport model is developed and analyzed to predict the inverse overpotential signature observed during lithium metal electrodeposition. This simple approach predicts inverse signatures stemming from the competing interplay between moving boundary rates and mass transfer limitations. The numerical scheme used for the present model simulations is presented in detail which has been further used to study the effect of design parameters on the prevalence and strength of inverse signatures. It was found that the proposed model and the analysis is more pertinent to thick lithium symmetric cells, commonly used for in-depth fundamental studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available