4.7 Review

Computational approaches in viral ecology

Journal

COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL
Volume 18, Issue -, Pages 1605-1612

Publisher

ELSEVIER
DOI: 10.1016/j.csbj.2020.06.019

Keywords

Bacteriophage-host; Viral diversity; Viral metagenomics; Microbial ecology; Bioinformatics

Ask authors/readers for more resources

Dynamic virus-host interactions play a critical role in regulating microbial community structure and function. Yet for decades prior to the genomics era, viruses were largely overlooked in microbial ecology research, as only low-throughput culture-based methods of discovering viruses were available. With the advent of metagenomics, culture-independent techniques have provided exciting opportunities to discover and study new viruses. Here, we review recently developed computational methods for identifying viral sequences, exploring viral diversity in environmental samples, and predicting hosts from metagenomic sequence data. Methods to analyze viruses in silico utilize unconventional approaches to tackle challenges unique to viruses, such as vast diversity, mosaic viral genomes, and the lack of universal marker genes. As the field of viral ecology expands exponentially, computational advances have become increasingly important to gain insight into the role viruses in diverse habitats. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available