4.7 Article

Cd-Based Metallohydrogel Composites with Graphene Oxide, MoS2, MoSe2, and WS2 for Semiconducting Schottky Barrier Diodes

Journal

ACS APPLIED NANO MATERIALS
Volume 3, Issue 11, Pages 11025-11036

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsanm.0c02215

Keywords

supramolecular Cd(II) metallohydrogel; low-molecular-weight gelator; 2D nanosheets; high-resolution TEM; Schottky barrier diode device

Funding

  1. WBSTBD (Government of West Bengal, India) [14(Sanc.)/ST/P/ST/15G-18/2018]
  2. CSIR, New Delhi, India [09/202(0079)/2018-EMRI]

Ask authors/readers for more resources

We have introduced an extremely low-molecular-weight organic gelator with a Cd(II) source to obtain a supramolecular Cd(II) metallohydrogel. Microstructural analysis of the gel has been performed. The mechanical property of the gel material has been scrutinized through rheological investigations. Different 2D nanostructures including graphene oxide (GO) and diverse transition-metal dichalcogenides (TMDs) like MoS2, MoSe2, and WS2 have been exploited to get 2D nanosheet-dispersed metallohydrogels of Cd(II). Morphological variation of the Cd(II) metalloghydrogel with different 2D nanostructures has been imaged through high-resolution transmission electron microscopy studies. The optoelectronic properties of the metallohydrogel materials have also been explored. The conducting property of Cd(U) metallohydrogel establishes the Schottky barrier diode-type nature. This shows the applicability of a supramolecular approach of 2D nanosheets toward the formation of 2D nanostructure-based supramolecular metallohydrogel systems under ambient conditions. The dispersion of exfoliated 2D nanosheets of GO and TMDs to the supramolecular metallohydrogel has been considered as a technique to tune the electronic property and morphology of the supramolecular metallohydrogel system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available