4.2 Article

Redox-structure dependence of molten iron oxides

Journal

COMMUNICATIONS MATERIALS
Volume 1, Issue 1, Pages -

Publisher

SPRINGERNATURE
DOI: 10.1038/s43246-020-00080-4

Keywords

-

Funding

  1. China Scholarship Council (CSC) [201706890053]
  2. DOE Office of Science [DE-AC02-06CH11357]
  3. DOE [DE-SC0015241, DE-SC0018601]
  4. U.S. Department of Energy (DOE) [DE-SC0018601, DE-SC0015241] Funding Source: U.S. Department of Energy (DOE)

Ask authors/readers for more resources

The atomic structural arrangements of liquid iron oxides affect the thermophysical and thermodynamic properties associated with the steelmaking process and magma flows. Here, the structures of stable and supercooled iron oxide melts have been investigated as a function of oxygen fugacity and temperature, using x-ray diffraction and aerodynamic levitation with laser heating. Total x-ray structure factors and their corresponding pair distribution functions were measured for temperatures ranging from 1973 K in the stable melt, to 1573K in the deeply supercooled liquid region, over a wide range of oxygen partial pressures. Empirical potential structure refinement yields average Fe-O coordination numbers ranging from similar to 4.5 to similar to 5 over the region FeO to Fe2O3, significantly lower than most existing reports. Ferric iron is dominated by FeO4, FeO5 and FeO6 units in the oxygen rich melt. For ferrous iron under reducing conditions FeO4 and FeO5 units dominate, in stark contrast to crystalline FeO.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available