4.5 Article

Mendelian Disorders of Cornification Caused by Defects in Intracellular Calcium Pumps: Mutation Update and Database for Variants in ATP2A2 and ATP2C1 Associated with Darier Disease and Hailey-Hailey Disease

Journal

HUMAN MUTATION
Volume 38, Issue 4, Pages 343-356

Publisher

WILEY
DOI: 10.1002/humu.23164

Keywords

Darier disease; Hailey-Hailey disease; acrokeratosis verruciformis of Hopf; ATP2A2; ATP2C1; SERCA2; SPCA1; locus-specific database; genotype-phenotype correlation

Funding

  1. Skin Research Institute of Singapore
  2. Procter Gamble
  3. University of Dundee
  4. DEBRA UK
  5. Tenovus Scotland

Ask authors/readers for more resources

The two disorders of cornification associated with mutations in genes coding for intracellular calcium pumps are Darier disease (DD) and Hailey-Hailey disease (HHD). DD is caused by mutations in the ATP2A2 gene, whereas the ATP2C1 gene is associated with HHD. Both are inherited as autosomal-dominant traits. DD is mainly defined by warty papules in seborrheic and flexural areas, whereas the major symptoms of HHD are vesicles and erosions in flexural skin. Both phenotypes are highly variable. In 12%-40% of DD patients and 12%-55% of HHD patients, no mutations in ATP2A2 or ATP2C1 are found. We provide a comprehensive review of clinical variability in DD and HHD and a review of all reported mutations in ATP2A2 and ATP2C1. Having the entire spectrum of ATP2A2 and ATP2C1 variants allows us to address the question of a genotype-phenotype correlation, which has not been settled unequivocally in DD and HHD. We created a database for all mutations in ATP2A2 and ATP2C1 using the Leiden Open Variation Database (LOVD v3.0), for variants reported in the literature and future inclusions. This data may be of use as a reference tool in further research on treatment of DD and HHD. (C) 2016 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available