4.1 Article

Ginkgolide B increases hydrogen sulfide and protects against endothelial dysfunction in diabetic rats

Journal

CROATIAN MEDICAL JOURNAL
Volume 56, Issue 1, Pages 4-13

Publisher

MEDICINSKA NAKLADA
DOI: 10.3325/cmj.2015.56.4

Keywords

-

Funding

  1. Wannan Medical College, The Army Key Project [BJN14C001]
  2. Natural Science Foundation of Anhui [090413096]

Ask authors/readers for more resources

Aim To evaluate the effect of ginkgolide B treatment on vascular endothelial function in diabetic rats. Methods The study included four groups with 15 male Sprague-Dawley rats: control group; control group treated with ginkgolide B; diabetic group; and diabetic treated with ginkgolide B. The activity of superoxide dismutase (SOD), malondialdehyde content, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits, and glutathione peroxidase 1 (GPX1) protein expression were determined in aortic tissues. Vasoconstriction to phenylephrine (PHE) and vasorelaxation to acetylcholine (Ach) and sodium nitroprusside (SNP) were assessed in aortic rings. Nitric oxide (NO) and hydrogen sulfide (H2S) were measured, as well as cystathionine gamma lyase (CSE) and cystathionine beta synthetase (CBS) protein expression, and endothelial nitric oxide synthase (eNOS) activity. Results Diabetes significantly impaired PHE-induced vasoconstriction and Ach-induced vasorelaxation (P < 0.001), reduced NO bioavailability and H2S production (P < 0.001), SOD activity, and GPX1 protein expression (P < 0.001), and increased malondialdehyde content and NADPH oxidase subunits, and CSE and CBS protein expression (P < 0.001). Ginkgolide B treatment improved PHE vasoconstriction and Ach vasorelaxation (P < 0.001), restored SOD (P = 0.005) and eNOS (P < 0.001) activities, H2S production (P = 0.044) and decreased malondialdehyde content (P = 0.014). Vasorelaxation to SNP was not significantly different in control and diabetic rats with or without ginkgolide B treatment. Besides, ginkgolide B increased GPX1 protein expression and reduced NADPH oxidase subunits, CBS and CSE protein expression. Conclusion Ginkgolide B alleviates endothelial dysfunction by reducing oxidative stress and elevating NO bioavailability and H2S production in diabetic rats.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available