4.5 Article

Ciliopathy-associated mutations of IFT122 impair ciliary protein trafficking but not ciliogenesis

Journal

HUMAN MOLECULAR GENETICS
Volume 27, Issue 3, Pages 516-528

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddx421

Keywords

-

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology, Japan [15H01211]
  2. Japan Society for the Promotion of Science [15H04370, 15K07929]
  3. Astellas Foundation for Research on Metabolic Disorders
  4. Takeda Science Foundation
  5. Uehara Memorial Foundation
  6. Grants-in-Aid for Scientific Research [15K07929, 15H04370, 15H01211] Funding Source: KAKEN

Ask authors/readers for more resources

The intraflagellar transport (IFT) machinery containing the IFT-A and IFT-B complexes mediates ciliary protein trafficking. Mutations in the genes encoding the six subunits of the IFT-A complex (IFT43, IFT121, IFT122, IFT139, IFT140, and IFT144) are known to cause skeletal ciliopathies, including cranioectodermal dysplasia (CED). As the IFT122 subunit connects the core and peripheral subcomplexes of the IFT-A complex, it is expected to play a pivotal role in the complex. Indeed, we here showed that knockout (KO) of the IFT122 gene in hTERT-RPE1 cells using the CRISPR/Cas9 system led to a severe ciliogenesis defect, whereas KO of other IFT-A genes had minor effects on ciliogenesis but impaired ciliary protein trafficking. Exogenous expression of not only wild-type IFT122 but also its CED-associated missense mutants, which fail to interact with other IFT-A subunits, rescued the ciliogenesis defect of IFT122-KO cells. However, IFT122-KO cells expressing CED-type IFT122 mutants showed defects in ciliary protein trafficking, such as ciliary entry of Smoothened in response to Hedgehog signaling activation. The trafficking defects partially resembled those observed in IFT144-KO cells, which demonstrate failed assembly of the functional IFT-A complex at the base of cilia. These observations make it likely that, although IFT122 is essential for ciliogenesis, CED-type missense mutations underlie a skeletal ciliopathy phenotype by perturbing ciliary protein trafficking with minor effects on ciliogenesis per se.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available