4.5 Article

Takeover Time in Highly Automated Vehicles: Noncritical Transitions to and From Manual Control

Journal

HUMAN FACTORS
Volume 59, Issue 4, Pages 689-705

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/0018720816685832

Keywords

automation; automated driving; control transitions; takeover requests; driving performance; task regulation

Funding

  1. European Marie Curie ITN project HF-Auto: Human Factors of Automated Driving [PITN-GA-2013-605817]

Ask authors/readers for more resources

Objective: The aim of this study was to review existing research into driver control transitions and to determine the time it takes drivers to resume control from a highly automated vehicle in noncritical scenarios. Background: Contemporary research has moved from an inclusive design approach to adhering only to mean/median values when designing control transitions in automated driving. Research into control transitions in highly automated driving has focused on urgent scenarios where drivers are given a relatively short time span to respond to a request to resume manual control. We found a paucity in research into more frequent scenarios for control transitions, such as planned exits from highway systems. Method: Twenty-six drivers drove two scenarios with an automated driving feature activated. Drivers were asked to read a newspaper, or to monitor the system, and to relinquish, or resume, control from the automation when prompted by vehicle systems. Results: Significantly longer control transition times were found between driving with and without secondary tasks. Control transition times were substantially longer than those reported in the peer-reviewed literature. Conclusion: We found that drivers take longer to resume control when under no time pressure compared with that reported in the literature. Moreover, we found that drivers occupied by a secondary task exhibit larger variance and slower responses to requests to resume control. Workload scores implied optimal workload. Application: Intra- and interindividual differences need to be accommodated by vehicle manufacturers and policy makers alike to ensure inclusive design of contemporary systems and safety during control transitions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available