4.7 Article

Cortical and Subcortical Mechanisms of Brain-Machine Interfaces

Journal

HUMAN BRAIN MAPPING
Volume 38, Issue 6, Pages 2971-2989

Publisher

WILEY
DOI: 10.1002/hbm.23566

Keywords

brain-machine interface; EEG-fMRI; motor imagery; sense of agency

Funding

  1. Roger de Spoelberch Foundation
  2. Bertarelli Foundation
  3. Centre d'Imagerie BioMedicale (CIBM) of the University of Lausanne (UNIL)
  4. ERC Starting Grant [640626]
  5. European Research Council (ERC) [640626] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

Technical advances in the field of Brain-Machine Interfaces (BMIs) enable users to control a variety of external devices such as robotic arms, wheelchairs, virtual entities and communication systems through the decoding of brain signals in real time. Most BMI systems sample activity from restricted brain regions, typically the motor and premotor cortex, with limited spatial resolution. Despite the growing number of applications, the cortical and subcortical systems involved in BMI control are currently unknown at the whole-brain level. Here, we provide a comprehensive and detailed report of the areas active during on-line BMI control. We recorded functional magnetic resonance imaging (fMRI) data while participants controlled an EEG-based BMI inside the scanner. We identified the regions activated during BMI control and how they overlap with those involved in motor imagery (without any BMI control). In addition, we investigated which regions reflect the subjective sense of controlling a BMI, the sense of agency for BMI-actions. Our data revealed an extended cortical-subcortical network involved in operating a motor-imagery BMI. This includes not only sensorimotor regions but also the posterior parietal cortex, the insula and the lateral occipital cortex. Interestingly, the basal ganglia and the anterior cingulate cortex were involved in the subjective sense of controlling the BMI. These results inform basic neuroscience by showing that the mechanisms of BMI control extend beyond sensorimotor cortices. This knowledge may be useful for the development of BMIs that offer a more natural and embodied feeling of control for the user. (C) 2017 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available