4.3 Article

Holocene climatic change in the Alaskan Arctic as inferred from oxygen-isotope and lake-sediment analyses at Wahoo Lake

Journal

HOLOCENE
Volume 27, Issue 11, Pages 1631-1644

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0959683617702230

Keywords

delta C-13; delta O-18; Arctic; carbonate isotopes; Holocene; Pisidium; solar irradiance

Funding

  1. NSF [ARC-1023477]
  2. EPA STAR Fellowship
  3. UIUC Department of Geology Undergraduate Research Award

Ask authors/readers for more resources

Despite recent progress in understanding high-latitude climate variability, paleoclimate records are scarce from the Alaskan Arctic. We conducted isotopic and sediment analyses at Wahoo Lake to infer Holocene climate variability in northeastern Alaska. Water O-18 and D values from the lake and its inlet/outlet streams suggest that winter precipitation dominates modern water inputs and that evaporation has limited influence on the lake's hydrological budget. The isotopic composition of Pisidium exhibits marked variations during the past 11,500 years, with O-18 ranging between -18.7 parts per thousand and -16.2 parts per thousand and C-13 between -7.1 parts per thousand and -2.3 parts per thousand (Vienna Pee Dee Belemnite (VPDB)). Elevated O-18 and sediment composition from 11.5 to 8.9 kcal. BP suggest evaporative O-18 enrichment and arid conditions. Rising lake levels are evidenced by the disappearance of Pisidium and a transition to low-carbonate gyttja ca. 6.3 kcal. BP and by the onset of sediment deposition on an adjacent shelf by 5.3 kcal. BP. These changes coincided with enhanced effective moisture in interior and southern Alaska as inferred from lake-level records and may be related to broad-scale atmospheric circulation changes. In the shelf sediments, carbonate abundance increases markedly at 3.5 kcal. BP, and O-18 increases from -18.0 parts per thousand to -16.5 parts per thousand at 2.1 kcal. BP, possibly resulting from increased temperature and/or summer precipitation. After 2.1 kcal. BP, O-18 fluctuates with an overall decreasing trend to -17.2 parts per thousand at 0.9 kcal. BP. Late-Holocene variations in our O-18 record display coherent patterns with regional glacier fluctuations at centennial to millennial scales, suggesting that O-18 minima were related to a combination of low temperatures and enhanced winter snowfall. Holocene variations in organic matter abundance at Wahoo Lake also show broad similarities to total solar irradiance, implying that suborbital solar variability played a role in modulating regional climate and aquatic productivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available