4.5 Article

Increased irrigation water salinity enhances nitrate transport to deep unsaturated soil

Journal

VADOSE ZONE JOURNAL
Volume 19, Issue 1, Pages -

Publisher

WILEY
DOI: 10.1002/vzj2.20041

Keywords

-

Funding

  1. Israel Ministry of Agriculture under the project Reducing nitrate fluxes to groundwater fromagricultural fields [20-13-0013]
  2. Israel Ministry of Agriculture, AKnowledge Center for Leveraging theRoot Zone for Modern Agriculture [0005-34-16]
  3. Israeli Ministry of Agriculture and Rural Development

Ask authors/readers for more resources

Excessive use of N fertilizers in agriculture often leads to NO3- accumulation in the unsaturated zone and to groundwater pollution. There is uncertainty regarding the variability in fertilizer transport and uptake efficiency due to the lack of studies based on continuous nondestructive measurements in unsaturated soils. In this study, we analyzed solute dynamics across the unsaturated zone underlying cultivated agricultural fields. Commercial crop rotations under four treatments, comprising two N fertilization regimes and two irrigation water salinity levels, were conducted in loess soil in the semiarid climate of the northern Negev Desert, Israel. The impact of the various treatments on water and solute dynamics below the root zone was monitored by a vadose zone monitoring system. The patterns of variations in soil water content and solute concentrations were analyzed using nonnegative tensor factorization. We found that irrigating using higher salinity water resulted in the earlier arrival of wetting fronts to the deeper layers and increased NO3- concentrations relative to the lower salinity treatments. Surprisingly, this effect was only seen in the deeper soil levels, whereas there was no significant difference in the arrival times and concentrations in the upper soil layers. Possible mechanisms are suggested and discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available